

PHTN4661

Optical Circuits and Fibres

Term 1, 2023

Course Overview

Staff Contact Details

Convenors

Name	Email	Availability	Location	Phone
Gang-Ding Peng	g.peng@unsw.edu.au		EE419	040171025 4

Demonstrators

Name	Email	Availability	Location	Phone
Jiaying Wang	jiaying.wang@student.unsw.ed u.au		EE422	
Zhaoyu Xie	zhaoyu.xie@student.unsw.edu .au		EE422	

Lab Staff

Name	Email	Availability	Location	Phone
Yingge (Lucy) Chen	yingge.chen@unsw.edu.au		EEG15	

School Contact Information

Consultations: Lecturer consultation times will be advised during the first lecture. You are welcome to email the tutor or laboratory demonstrator, who can answer your questions on this course and can also provide you with consultation times. ALL email enquiries should be made from your student email address with ELEC/TELExxxx in the subject line; otherwise they will not be answered.

Keeping Informed: Announcements may be made during classes, via email (to your student email address) and/or via online learning and teaching platforms – in this course, we will use Moodle https://moodle.telt.unsw.edu.au/login/index.php. Please note that you will be deemed to have received this information, so you should take careful note of all announcements.

Student Support Enquiries

For enrolment and progression enquiries please contact Student Services

Web

Electrical Engineering Homepage

Engineering Student Support Services

Engineering Industrial Training

UNSW Study Abroad and Exchange (for inbound students)

UNSW Future Students

Phone

(+61 2) 9385 8500 - Nucleus Student Hub

(+61 2) 9385 7661 – Engineering Industrial Training

(+61 2) 9385 3179 - UNSW Study Abroad and UNSW Exchange (for inbound students)

Email

Engineering Student Support Services – current student enquiries

• e.g. enrolment, progression, clash requests, course issues or program-related queries

Engineering Industrial Training – Industrial training questions

<u>UNSW Study Abroad</u> – study abroad student enquiries (for inbound students)

<u>UNSW Exchange</u> – student exchange enquiries (for inbound students)

UNSW Future Students – potential student enquiries

e.g. admissions, fees, programs, credit transfer

Course Details

Units of Credit 6

Summary of the Course

Basics of optical fibres and waveguides; Waveguide analysis and optical modes; Single-mode and multimode fibres and waveguides; Optical transmission properties: attenuation, dispersion and bandwidth; Optical coupling and connection; Optical components and circuits; Fibre and waveguide fabrication; Fibre and waveguide measurement; Advanced topics and recent developments.

Course Aims

The course aims to understand, and become familiar with, fundamental principles, theoretical methods and experimental techniques of optical fibres and related technologies, and enable the student to carry out basic optical fibre and waveguide related analysis, design and measurement. The primary aim of this course is to provide students with a solid foundation in optical fibre and waveguide technologies.

Course Learning Outcomes

After successfully completing this course, you should be able to:

Learning Outcome	EA Stage 1 Competencies
Identify and apply main theoretical methods for modelling and analysing optical fibres and waveguides	PE1.1, PE1.2, PE1.3, PE1.5
Identify, interpret and assess properties of optical fibres and waveguides	PE1.1, PE1.3, PE1.4, PE1.5
3. Differentiate and interpret main aspects of design, manufacture and application of optical fibres, waveguides and circuits	PE1.1, PE1.2, PE1.3, PE1.6, PE2.1, PE2.2, PE2.3, PE2.4
Apply and report experimental methods and measurement techniques of optical fibres and waveguides	PE1.3, PE1.5, PE2.1, PE2.2, PE2.3, PE2.4, PE3.2, PE3.4
5. Recognise and analyse technical issues and considerations when using optical fibres / waveguides in optical circuits and systems	PE1.1, PE1.3, PE1.4, PE2.1, PE2.3, PE2.4
6.	

Teaching Strategies

The course consists of the following elements: lectures, tutorials, laboratory experiments, consultations and assessments. Effective learning can be achieved when you are actively engaged in the learning process and communicating and discussing freely with the course lecturer, tutor, lab demonstrator and fellow students.

Additional Course Information

Relationship to Other Courses

The course is a professional elective offered to undergraduate (4th year) and postgraduate students in the School of Electrical Engineering and Telecommunications at UNSW. The course builds the foundation of knowing optical fibres and waveguides and using them to construct optical circuits and systems.

Pre-requisites: The pre-requisite for this course is ELEC3115, Electromagnetic Engineering.

Assumed knowledge: It is essential that the students are familiar with the fundamentals of electromagnetic theory (e.g. Maxwell's equations), engineering mathematic methods and communication system theory. It is further assumed that the students have satisfactorily completed undergraduate courses in electrical engineering or physics. If you feel you don't have the appropriate background, then these books will help:

- B.P. Lathi, Modern Digital & Analog Communication Systems
- D.K. Cheng, Field & Wave Electromagnetics

Following courses: This course is followed by the undergraduate (4th year) and postgraduate course PHTN4662, Photonics Networks.

Course Resources

Reference books

We do not prescribe a textbook. We recommend you have either of these as the main reference book:

J. Senior: Optical Fibre Communications: Principles and Practice

G. Keiser: Optical Fibre Communications

Students are encouraged to purchase one of these books as they provide the most coverage of the topics in this course and also the following course: PHTN4662. There are also quite a few copies of them in the UNSW library.

On-line resources

Moodle: As a part of the teaching component, Moodle will be used to disseminate teaching materials, host forums and occasionally quizzes. Assessment marks will also be made available via Moodle: https://moodle.telt.unsw.edu.au/login/index.php.

Mailing list: Announcements concerning course information will be given in the lectures and/or on Moodle and/or via email (which will be sent to your UNSW email address).

Assessment

Assessment task	Weight	Due Date	Course Learning Outcomes Assessed
1. Final Examination	50%		1, 2, 3, 4, 5
2. Mid-Term Examination	25%		1, 2, 3, 4, 5
3. Lab Experiments and Reports	25%		1, 2, 3, 4, 5

Assessment 1: Final Examination

Assessment length: 2 hours

Marks returned: 100

Final examination: The final exam will be a standard open-book 2 hour written examination. University approved calculators are allowed. The examination tests analytical and critical thinking and general understanding of the course material in a controlled fashion. Questions may be drawn from any aspect of the course, unless specifically indicated otherwise by the lecture staff. Assessment is a graded mark according the correct fraction of the answers to the exam questions.

Assessment 2: Mid-Term Examination

Assessment length: 1 hour

Marks returned: 100

Mid-term examination: The middle-term exam will be open book written examination of 1 hour. University approved calculators are allowed. The examination tests general understanding of the course materials covered up to the middle-term.

Assessment 3: Lab Experiments and Reports

Lab experiments and laboratory reports must be completed as required.

Assessment based on the performance of laboratory experiments and reports

Attendance Requirements

Please note that lecture recordings are not available for this course. Students are strongly encouraged to attend all classes and contact the Course Authority to make alternative arrangements for classes missed.

Course Schedule

Please note:

- You are expected to prepare the course study by reading the course outlines carefully in O-Week
- You are expected to attend all lectures, tutorials, labs, exams in order to maximise learning.
- Self-directed study and self-organised group learning are strongly encouraged, in addition to the class contact hours throughout the course.
- You must prepare well for your laboratory classes and your lab work will be assessed.
- Reading additional texts will further enhance your learning experience. Besides the lecture and lab notes, you are encouraged to read reference texts if feel needed.

Timetable

Week	Lecture	Tut	Lab
1	Basics of optical fibres and waveguides	Yes	
2	Waveguide analysis and optical modes	Yes	Yes
3	Optical waveguide properties	Yes	Yes
4	Optical fibre and waveguide fabrication	Yes	Yes
5	Optical coupling and connection	Yes	Yes
6	Consultation	Consultation	Yes
7	Midterm Exam	Yes	Yes
8	Optical fibre and waveguide measurement	Yes	Yes
9	Optical components and circuits	Yes	Yes
10	Advanced topics and course review		

Resources

Prescribed Resources

Moodle: As a part of the teaching component, Moodle will be used to disseminate teaching materials, host forums and occasionally quizzes. Assessment marks will also be made available via Moodle: https://moodle.telt.unsw.edu.au/login/index.php.

Mailing list: Announcements concerning course information will be given in the lectures and/or on Moodle and/or via email (which will be sent to your UNSW email address).

Course Evaluation and Development

This course is under constant revision in order to improve the learning outcomes for all students. Please forward any feedback (positive or negative) on the course to the course convener or via the Course and Teaching Evaluation and Improvement Process. You can also provide feedback to ELSOC who will raise your concerns at student focus group meetings. As a result of previous feedback obtained for this course and in our efforts to provide a rich and meaningful learning experience, we have continued to evaluate and modify our delivery and assessment methods.

Academic Honesty and Plagiarism

Academic Honesty and Plagiarism

Plagiarism is the unacknowledged use of other people's work, including the copying of assignment works and laboratory results from other students. Plagiarism is considered a form of academic misconduct, and the University has very strict rules that include some severe penalties. For UNSW policies, penalties and information to help you avoid plagiarism, see https://student.unsw.edu.au/plagiarism. To find out if you understand plagiarism correctly, try this short quiz: https://student.unsw.edu.au/plagiarism-quiz.

General Conduct and Behaviour

Consideration and respect for the needs of your fellow students and teaching staff is an expectation. Conduct which unduly disrupts or interferes with a class is not acceptable and students may be asked to leave the class.

Academic Information

COVID19 - Important Health Related Notice

Your health and the health of those in your class is critically important. You must stay at home if you are sick or have been advised to self-isolate by NSW health or government authorities. You will not be penalised for missing a face-to-face activity due to illness or a requirement to self-isolate. We will work with you to ensure continuity of learning during your isolation and have plans in place for you to catch up on any content or learning activities you may miss. Where this might not be possible, an application for fee remission may be discussed.

If you are required to self-isolate and/or need emotional or financial support, please contact the Nucleus:Student Hub. If you are unable to complete an assessment, or attend a class with an attendance or participation requirement, please let your teacher know and apply for special consideration through the Special Consideration portal. To advise the University of a positive COVID-19 test result or if you suspect you have COVID-19 and are being tested, please fill in this form.

UNSW requires all staff and students to follow NSW Health advice. Any failure to act in accordance with that advice may amount to a breach of the Student Code of Conduct. Please refer to the <u>Safe Return to Campus</u> guide for students for more information on safe practices.

Dates to note

Important Dates available at: https://student.unsw.edu.au/dates

Student Responsibilities and Conduct

Students are expected to be familiar with and adhere to all UNSW policies (see https://student.unsw.edu.au/policy), and particular attention is drawn to the following:

Workload

It is expected that you will spend at least **15 hours per week** studying a 6 UoC course, from Week 1 until the final assessment, including both formal classes and *independent*, *self-directed study*. In periods where you need to complete assignments or prepare for examinations, the workload may be greater. Over-commitment has been a common source of failure for many students. You should take the required workload into account when planning how to balance study with employment and other activities.

Attendance

Regular and punctual attendance at all classes is expected. UNSW regulations state that if students attend less than 80% of scheduled classes they may be refused final assessment.

Work Health and Safety

UNSW policy requires each person to work safely and responsibly, in order to avoid personal injury and to protect the safety of others.

Special Consideration and Supplementary Examinations

You must submit all assignments and attend all examinations scheduled for your course. You can apply for special consideration when illness or other circumstances beyond your control interfere with an assessment performance. If you need to submit an application for special consideration for an exam or assessment, you must submit the application **prior to the start** of the exam or before the assessment is submitted, except where illness or misadventure prevent you from doing so. Be aware of the "fit to sit/submit" rule which means that if you sit an exam or submit an assignment, you are declaring yourself well enough to do so and cannot later apply for Special Consideration. For more information and how to apply, see https://student.unsw.edu.au/special-consideration.

Administrative Matters

On issues and procedures regarding such matters as special needs, equity and diversity, occupational health and safety, enrolment, rights, and general expectations of students, please refer to the School and UNSW policies:

https://student.unsw.edu.au/guide

https://www.unsw.edu.au/engineering/our-schools/electrical-engineering-telecommunications/student-life/resources

Disclaimer

This Course Outline sets out description of classes at the date the Course Outline is published. The nature of classes may change during the Term after the Course Outline is published. Moodle should be consulted for the up-to-date class descriptions. If there is any inconsistency in the description of activities between the University timetable and the Course Outline (as updated in Moodle), the description in the Course Outline/Moodle applies.

Image Credit

Photo of Fibre Draw Tower in UNSW

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.

Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

Program Intended Learning Outcomes	
Knowledge and skill base	
PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline	✓
PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline	✓
PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline	✓
PE1.4 Discernment of knowledge development and research directions within the engineering discipline	✓
PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline	✓
PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline	✓
Engineering application ability	
PE2.1 Application of established engineering methods to complex engineering problem solving	✓
PE2.2 Fluent application of engineering techniques, tools and resources	✓
PE2.3 Application of systematic engineering synthesis and design processes	✓
PE2.4 Application of systematic approaches to the conduct and management of engineering projects	✓
Professional and personal attributes	
PE3.1 Ethical conduct and professional accountability	
PE3.2 Effective oral and written communication in professional and lay domains	✓
PE3.3 Creative, innovative and pro-active demeanour	
PE3.4 Professional use and management of information	✓
PE3.5 Orderly management of self, and professional conduct	
PE3.6 Effective team membership and team leadership	